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Abstract

We consider the design of multi-agent systems so as to optimize

an overall world utility function when (i) those systems lack cen-
tralized communication and control [10, 14], and (ii) each agents
runs a distinct Reinforcement Learning (RL) algorithm [3, 11, 13].
A crucial issue in such design problems is to initialize/update each
agent's private utility function, so as to induce best possible world

utility. Traditional "team game" solutions to this problem sidestep
this issue and simply assign to each agent the world utility as its
private utility function [6]. In previous work we used the "Col-
lective Intelligence" framework to derive a better choice of private
utility functions, one that results in world utility performance up
to orders of magnitude superior to that ensuing from use of the
team game utility [15, 17, 16, 18]. In this paper we extend these
results. We derive the general class of private utility functions that
both are easy for the individual agents to learn and that, if learned
welt, result in high world utility. We demonstrate experimentally
that using these new utility ._unctions can result in significantly
improved performance over that of our previously proposed utility,
over and above that previous utility's superiority to the conven-

tional team game utility.

1 Introduction

In this paper we are interested in multi-agent systems (MAS's) where:

• the agents each run separate reinforcement learning (RL) algorithms;

• there is little centralized, personalized communication or control;

• there is a provided world utility function rating possible histories of the full system.

In such a system, we are confronted with an inverse problem: How should we ini-
tialize/update the agents' individual utility functions to ensure that the agents do
not "work at cross-purposes", so that their collective behavior maximizes the pro-
vided world utility function? Intuitively, we need to provide the agents with utility
functions they can [earn well, while also ensuring that their doing so won't result in
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tim _/++neTnl inw+rso prol+l+,m. (See [16] for a d,'taih,,l discussion <;f the rolat, ionship
b++tw<+'_+nt h+,s++rich[s, inw+lving hundreds <;f refer+_nces.) Other previous work does
consider tit+' general inverse problem, and <lees so by enlploying MAS's in which
each agent uses reinforcement learning [51. However this work simply elects to pro-
vide each agent with the world utility function as its private utility function (i.e.,
implentents a "team" game). Unfortunately, as expoumte_t below and in previous

work, this approach scales to large problems very poorly. (Intuitively, the difficulty
is that each agent can have a hard time discerning the echo of its behavior on the
world utility when the system is large.)

In previous work, as an alternative to the team game approach, we used the +'COl-
lective INtelligence" (COIN) framework to derive the alternative "Wonderful Life"

private utility function (WLU) [16], and demonstrated that it markedly outper-
forms the team game private utility in several disparate domains [15, 17, 16, 18].
In particular, in [1S] we considered aneconomics "congestion" game, in particular
a more challenging variant of Arthur's "El Farol bar attendance problem" [1], also
known as the "minority game" [4]. In this problem, agents have to determine which
night in the week to attend a bar. The problem is set up so that if either too few
people attend (boring evening) or too many people attend (crowded evening), the
total enjoyment of the attendees drops. Note the built-in frustration effect that if
all agents could predict attendance perfectly, they would all make the same atten-

dance choice, and total enjoyment would be minimal. The goal is to avoid this by
designing the reward functions of the attendees so that the total enjoyment across
all nights is maximized. Our results indicate that use of the WLU can result in
performance orders of magnitude superior to that of team game utilities [1S].

The WI+U has a free parameter (the "clamping parameter"), which we simply set
to 0 in our previous work. In this paper we employ a series of approximations to
derive a theoretically optimal value of the clamping parameter, and demonstrate
the empirical superiority of that value in computer experiments. To derive the op-
timal value we must employ some of the mathematics of COINs, whose relevant
concepts we review in the next section. We next use those concepts to sketch the
calculation deriving the optimal clamping parameter. Our experiments involved
the Bar problem, whose detailed setup is discussed in Section 3. Finally we present
the results of the experiments in Section 4. Those results corroborate the predicted
improvement in performance when using our theoretically derived clamping param-
eter. This extends even further the superiority of the COIN-based approach above
that of conventional team-game approaches.

2 Theory of COINs

In this section we summarize that part of the mathematics of COINs that is rel-
evant to the study in this article. We consider the state of the system across a

set of consecutive time steps, t E {0, l, ...}. Without loss of generality, all relevant
characteristics of agent t7 at time t -- including its internal parameters at that time
as well as its externally visible actions -- are encapsulated by a Euclidean vector

_,s.t' the state of agent rl at time t. (,t is the set of the states of all agents at t, and

__ is the system's worklline, i.e., the state of all agents across all time.
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World utility is G(_'),:tn, I wh-n ,jis an RL algorithm "'striving tc_ itwrcas,:' its

private utility, we write that utility ;Ls "/,l(q_')' (The m;tr.[wmati,:s can rea, lily be

g_,n,,r:diz,,t b,,y,)nd stwh RL-b;ts,,l agonts; see it6] f(_r ,[,.tails.) H_,r,_ w_: re,strict

attetttion to utilities of tlw fi)rm _t Rt((_.t) fi_r reward functions /Tt.

We ar,' intcrest,,d in syst,,tns wh,)se dynamics is dett,rrninistic. (This covers in
pnrti,;ular any system run on a ,ligital conxput_,r, even on,? using a pseudo-random

nmnber generator to genoraW apparent sto(:hasticity.) We indicate that dynamics

by writing g = C(_,0). So all characteristics of an agent ,7 at t = 0 that affects the

ensuing dynamics of the system, including its private utility, are included in ("0.0"

Definition: A system is factored if for each agent q individually,

-,,(C(q_'0)) > ":,,(C(__:o)) ¢_ G(C((_o)) >_ G(C((_'.o)) ,

for all pairs -_,o and -(:0 that differ only for node q.

For a factored system, when every agents' private utility is optimized (given the
other agents' behavior), world utility is at a critical point (e.g., a local maximum)

[16]. In game-theoretic terms, optimal global behavior occurs when the agents' are
at a private utility Nash equilibrium [7]. Accordingly, there can be no TOC for a
factored system [16, 17, 18].) In addition, off of equilibrium, the private utilities in
factored systems are "aligned" with the world utility.

Definition: The (t = 0) effect set of node r/ at _.(, S_/I(__), is the set of all

components _o'.t' for which the gradients _'¢o(C(_.o)),7,.t, # 6. S_11 with no

specification of _" is defined as t_J¢_.EcS,_:/(_"). We will also find it useful to define

S_ :/ as the set of all components that are not in S_ :/.

Intuitively, the t = 0 effect set of ,7 is the set of all node-time pairs which, under the
deterministic dynamics of the system, are affected by changes to O's t = 0 state.

Theorem: A system is factored at all __E C iff for all those __,Vr], we can write

70(-¢)= (I)

for some function q'o(-,-) such that Oa_o(_.s:,.:, G) > 0 for all q_."E C and associated

G values (the form of the {3'o} off of C is arbitrary). (Proof in [16].)

Definition: Let a be a set of agent-time pairs. CL_(_) is ( modified by "clamping"

the states corresponding to the elements of a to some arbitrary pre-fixed vector g.
Then the (effect set) Wonderful Life Utility for node 17 (at time 0) is WLUn(_) =-

G((.) - G(CLs_,, (_)), where conventionally g = 6.

Note the crucial fact that to evaluate the WLU one does not need to know how to

calculate the system's behavior under counter-factual starting conditions. All that
is needed to evaluate WLL_ is the function G(.), the actual __, and S_ fl (which can

often be well-approximated even with little knowledge of C).

Since G(CLs_H(_)) is a function only of (_.s_t/, by Thin. 1 we know that WLU

is factored. As another example, if 3', = G Yr/ (a team game), then the system is
factored, in this case regardless of C. However for large systems where G sensitively
depends on all components of the system, each agent may experience difficulty
discerning the effects of its actions on G. As a consequence, each r/ may have
difficulty achieving high 3'_ in a team game. We can quantify this signal/noise effect
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[_',+:all b(._ proven that in many circumstances, especially in large prol)lems, WLU
h,_s much higher differential learnability than does the team game choice of private
utilities [16]. (Intuitively, this is due to the subtraction occurring in the WLU's

removing a tot of the noise.) The result is that convergence to optimal G with
WLU is much quicker (up to orders of magnitude so) than with a team game.

However the equivalence class of utilities that are factored for a particular G is not

restricted to the associated team game utility and clamp-to-O WLU. Indeed, one
can consider solving for the utility in that equivalence class that maximizes differ-
ential learnability. An approximation to this calculation is to solve for the factored

utility that minimizes the expected value of [,\,,waR, I-", where the expectation is

over the values -(,o that, while fixed, are not known to the system designer. (As

an example, algorithms using pseudo-random number generators are deterministic,
strictly speaking, but are effectively stochastic to the system designer.)

A number of further approximations -- too long to go through here -- have to
be made to complete this calculation. The final answer can be approximated as a

WLU, where t7 # (_, but rather equals the expected S_/I. Now in the experiments

recounted below SJ / is approximated as the sequence of q+s successive actions

(i.e., the approximation is made that to first order, r/'s actions have no effects
on the actions of other agents). Furthermore, for simplicity, we do not actually
clamp each q separately to its own average action sequence, which would involve
modifying I,VLU, in an online manner. Rather we clamp all agents to the same
average action. We then made the guess that the typical probability distribution
over actions is uniform. (Intuitively, we would expect such a choice to be more

accurate at early times than at later times in which agents have "specialized".)

3 The Bar Problem

We focus on the following six more general variants of the bar problem investigated
in [18]: There are N agents, each picking one out of seven actions every week. Each

action corresponds to attending the bar on some particular set of l E {1, 2, 3, 4, 5, 6}
out of the seven nights of the current week, i.e., given l, each action is a vertex of the

7-dimensional unit hypercube having l l's. At the end of the week the agents get
their rewards and the process is repeated. For simplicity we chose the attendance
profiles of each potential action so that when the actions are selected uniformly the
resultant attendance profile across all seven nights is also uniform.

Vvbrld utility is O(_) = Y_t Ra(__,t), where Ra(__,t ) -- _=t O(zk(__, t)), xk(__, t) is

the total attendance on night k at week t, ¢(y) = yexp(-y/c); and c is a real-
valued parameter. (To keep the "congestion" level constant, for I going from I to 6
c = {3, 6, 8, 10, 12, 15} respectively.) Our choice of ¢(.) means that when either too
few or too many agents attend some night in some week world reward RG is low.

Since we are concentrating on the utilities rather than on the RL algorithms that
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action.At timb(_ginniagof each week, each rt pick_ the uight to ,.ttten, l randomly,

using a Boltzmann distribution over the sev(,a comp()neuts _)f t]'s estimated rewards
vector. For simplicity, temperature does not _[ecay in time. However to reflect the

fact that each agent op_rates in a non-stationary environnwnt, rewar_l estimates
are fiJrmed using exponentially aged data: in any week t, the estimate rl makes
for the reward for attending night i is a weighted average of all the rewards it
has previously received when it attended that night, with the weights given by an
exponential function of how long ago each such reward was. To form the agents'

initial training set, we had an initial period in which all actions by all agents were
chosen uniformly randomly, with no learning.

4 Experimental Results

We investigate three choices of g: 1_, i" = (1, 1, 1, 1, 1, 1, 1), and the "average" action,

ff = i'/7. The associated WLU's are distinguished with a superscript. In the
experiments reported here all agents have the same reward function, so from now
on we drop the agent subscript from the private utilities. Writing them out, the
three WLU's provide the following reward functions:

R_,._(__,) - Rc(C__)-Rc(CL6.((_,,))

=. ¢,o(x,. (;. t)) - ¢,.(x._.(c..t)- 1)

Rwtr((_,t) = RG((_.,,) - RG(CL_((_.t))

7

= _ o.(_.(_(,t)) - _. ,'_. (_(,t) + 1)
d_d,7

-, -, so(eL.((,))Rwz._(( t) = Re(C.t) -
7

= _ o,_(_.(__,t)) - ¢.(._(_, t) + _.)
d#d,

+ ¢_d.(Xd.(_.t)) ¢d.(Z._.((', t) -- t+ad)

where d o is the night picked by r/and aa = 1/7. The team game reward function is
simply Re. Note that to evaluate RwLa each agent only needs to know the total
attendance on the night it attended. In contrast, RG and RWL_ require centralized

communication concerning all 7 nights, and Rwt r requires communication concern-
ing 6 nights. Finally, note that when when viewed in attendance space rather than

action space, CL a is clamping to the attendance vector _'_ = _a=1 "_', where ua,i
is the i'th component (0 or 1) of the the d'th action vector. So for example, for

7 Jd i
l = 1, CL a clamps to ffi = _"_d=l -V" where 5a,i is the Kronecker delta function.

The results we report in this section are averages over 20 runs with 60 agents, and
throughout this article the error bars are too small to depict. Figure l(a) shows the
normalized world reward obtained for the different private utilities as a function of

I. Rwt.a performs well for all problems. Rwtr on the other hand performs poorly
when agents only attend on a few nights, but reaches the performance of Rwt._ when
agents need to select six nights, a situation where the two clamping vectors are very

similar (1' and g, respectively). Rwta shows a slight drop in performance when the
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Figure l: (a) Behavior of different reward function with respect to number of nights
to attend. (b) Sensitivity of reward functions to internal parameters. (In both

figures, WL a is <> ; WL 6 is + ; WL f is [] ; G is ×)

number of nights to attend increases, while RG shows a much more pronounced drop.
Furthermore, in agreement with our previous results [18], despite being factored,
the poor signal-to-noise in RG results in poor performance with it for all problems.
(Temperatures varied between .01 and .02 for the three WL rewards, and between. 1

and .2 for the G reward, which provided the respective best performances for each.)
These _esults confirm our theoretical prediction of what private utility converges
fastest to the world utility maximum.

We :.!so stt, died the sensitivity of performance to the internal parameters of the
learning algorithms. Figure l(b) presents experiments with l = 1 for a set of differ-

ent temperatures in the RL algorithms. (The two straight lines correspond to the
optimal performance, and the "baseline" performance given by uniform occupancies
across all nights.) Rwt_ is fairly insensitive to the temperature, until it gets so high

that agents' actions are chosen almost randomly. Rwc _ depends more than RwL_
does oi. having sufficient exploration and therefore has a narrower range of good

ten-_peratures. Both RwLr and RG have more serious learnability problems, and
therefore have shallower and thinner performance graphs.

5 Conclusion

In this article we considered how to configure large multi-agent systems where

each agent uses reinforcement learning, and where there is no personalized (agent-
specific) centralized communication and control. The inverse problem associated
with such systems is how to initialize/update the individual agents' private utility
functions so that their collective behavior optimizes a pre-specified world utility
function. The mathematics of COINs is specifically designed for this problem, and
in previous experiments systems based on it have far outperformed conventional
"team game" systems, in which each agent has the world utility as its private util-
ity function. Moreover, the gain in performance grows with the size of the system,
typically reaching orders of magnitude for systems that consist of hundred of agents.

In those previous experiments the COIN-based private utilities had a free parameter,
which we set to 0. However as we synopsised in this paper, a series of approxima-
tions in the mathematics of COINs allows one to derive an optimal value for that
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